Acta Cryst. (1952). 5, 574

The Crystal Structure of Magnesium Pyroborate

By Y. Takéuchi

Mineralogical Institute, Science Department, University of Tokyo, Hongo, Tokyo, Japan

(Received 2 January 1952 and in revised form 4 February 1952)

The crystal structure of magnesium pyroborate has been studied, using rotation and Weissenberg photographs (Mo $K\alpha$, $\lambda = 0.710$ Å), by the trial-and-error and Fourier-series (two-dimensional) methods. The unit cell has the dimensions $a = 12\cdot10\pm0.05$, $b = 3\cdot12\pm0.02$, $c = 9\cdot36\pm0.05$ Å, $\beta = 104^{\circ} 20'\pm30'$, containing four molecules of Mg₂B₂O₅. The space group is $C_{2b}^{\circ}-P2_1/a$. The structure is composed of B₂O₅ (double-triangle) groups held together by magnesium atoms which are in the middle of distorted oxygen octahedra. The B₂O₅ group is almost identical in form with one recently found by Berger in cobalt pyroborate, which has a structure of Mg₂B₂O₅ as a polysynthetic structure has been envisaged, using the powder photographs of natural and artificial products.

Introduction

As part of the program undertaken by Prof. T. Ito for the study of magnesium and other borates (Ito, 1950, p. 143; Takéuchi, Watanabé & Ito, 1950; Takéuchi, 1950) we have analysed the crystal structure of magnesium pyroborate. The material used for the study was not an artificial product but a possibly new mineral from the Suan mine, North Korea (Watanabé, 1937). It has the theoretical composition $Mg_{2}B_{2}O_{5}$ (MgO 46.63%, $B_{2}O_{3}$ 40.08%, CaO 5.06%, SiO_2 0.60%, Al_2O_3 Fe_2O_3 0.63%, H_2O (+)0.90%, $H_2O_{-}(-)0.23\%$, $CO_2 5.06\%$, total 99.46%, analysis by N. Saito & N. Kokubu; after deduction of CaCO₃ and other impurities, MgO 53.8%, B2O3 46.2% as against MgO 53.7%, B_2O_3 46.3%, theoretical). Although the mineral as such will be described elsewhere in a detailed report by Dr Takéo Watanabé who kindly supplied the material and necessary information, we have been induced to give this prior account of our structural study by the publication (Berger, 1950) of the crystal structure of $Co_2B_2O_5$. The configurations of the B_2O_5 groups found in these closely related natural and artificial compounds are in form practically identical. The two structures, though worked out independently, show a striking similarity, so that we can very easily derive one from the other. Further, the structure of the mineral, together with that of its artificial counterpart, provides another example for the polysymmetric synthesis realized in nature (Ito, 1950).

Unit cell and space group

For rotation and Weissenberg photographs Mo $K\alpha$ radiation ($\lambda = 0.710$ Å) was used. The rotation photograph taken about the direction of elongation of a single crystal loosened from the fibrous aggregate indicates that this is the b axis and that the crystal is monoclinic. The Weissenberg-Buerger photographs about the same axis give the constants

$$a=12\cdot10\pm0\cdot05, \ b=3\cdot12\pm0\cdot02, \ c=9\cdot36\pm0\cdot05 \text{ Å},$$

 $\beta=104^{\circ}20'+30',$

with the axial ratio

$$a:b:c=3.880:1:3.000$$
.

There are four molecules of $Mg_2B_2O_5$ in the unit cell, the specific gravity calculated being 2.89 against 2.91 measured. The space group is $C_{2h}^5-P2_1/\alpha$, (hol) and (0k0) reflexions being absent respectively when h and k are odd.

Analysis

In analysis we have proceeded in the same way as in working out the similar compounds (Takéuchi *et al.*, 1950). The very short b length suggests that the unit cell contains along this direction virtually a

Fig. 1. A hexagonal close-packed layer of oxygen atoms in which the a and c axes are so placed as to make $(60\overline{2})$ reflexion strong, the third axis being perpendicular to the layer. The traces of $(60\overline{2})$ are shown as a system of parallel lines.

single layer of oxygen atoms. Therefore, we can simulate the unit cell by putting a layer of hexagonally closest-packed oxygen atoms (radius 1.33 Å) parallel to (010) and by taking the other crystallographic axes in such directions that a very strong $(60\overline{2})$ reflexion, as observed, would occur (Fig. 1). This ideal unit cell has the dimensions a = 13.94, b = 2.66, c = 9.12 Å, $\beta = 110^{\circ}$, and contains the same number (twenty) of oxygen atoms as the actual cell. The observed (h00) and (00l) spectra enable us further to select in this arrangement one out of several possible sets of positions for magnesium with a sixfold coordination. With the positions of oxygen and magnesium atoms thus approximately fixed, and assuming the usual triangular coordination for boron, the final structure was achieved by the trial-and-error method followed by the refinement of x and z parameters of certain atoms by the Fourier synthesis.

In contrast to the readiness and accuracy with which the atoms have been located in the x and zdirections, the y parameters are rather difficult (apart from the geometrical considerations) to obtain even roughly on account of the above-mentioned very short b length with the consequent lack of reflexions with k > 2. In order to find these parameters we first took into account, not the individual reflexions, but the general trends of (hnl) spectra as revealed in the b(n) Weissenberg-Buerger photographs (Takéuchi et al., 1950). These show that a similarity in intensity distribution exists between (h0l) and (h2l) spectra except for a few (h2l) reflexions with h odd. The structure amplitude for the assigned space group is such that this can occur only when almost all atoms in the cell have $b = \frac{1}{4}$ or $\frac{3}{4}$. We made these the starting points for the determination of the b parameters of atoms.

Since the preliminary analysis revealed that there is in the structure a B_2O_5 group which was of a new type at the time of this study, and since its mode of grouping, as may easily be seen, varies visibly with the positions of oxygen atoms, especially the one at the centre of the group, we were very careful in determining these positions, taking into account various eventualities in bond lengths and angles. The final parameters (Table 1) explain best the experimental data (Table 2).

	x/a	y/b	z/c	No. of equivalent points
Or	0.187	0.81	0.320	4
0 ₁₁	0.390	0.80	0.438	4
011	0.315	0.50	0.199	4
OIV	0.006	0.25	0.245	4
Ov	0.387	0.31	0.000	4
Mg	0.147	0.31	0.132	4
MgII	0.061	0.75	0.412	4
B	0.298	0.71	0.321	4
$\mathbf{B}_{\mathbf{II}}$	0.408	0.32	0.146	4

Description of structure

The structure of $Mg_2B_2O_5$ is shown in Fig. 2, projected on (010), and the corresponding Fourier projection of electron density in Fig. 3. The structure is

Fig. 2. The structure of $Mg_2B_2O_5$, projected on (010). Numbers give the height of atoms in the unit cell as a percentage of the *b* translation. The B–O bonds are indicated.

Fig. 3. The xz Fourier projection of electron density of $Mg_2B_2O_5$. Contours at intervals of 2 e.Å⁻², the zero-electron lines being broken.

Fig. 4. The B_2O_5 group in $Mg_2B_2O_5$. Large open circles represent oxygen and small black circles boron atoms. The height of atoms from the plane of the figure is given in Ångström units.

composed of the double-triangular groups, B_2O_5 , linked together by magnesium atoms. The B_2O_5 group (Fig. 4) does not have all its oxygen atoms in a plane, the angle between the two slanting planar BO₃ groups

Table 2. Observed and calculated intensities of reflexions

Intensities estimated visually. Intensities observed were converted to the absolute values by scaling them by the calculated F value of the most strong (602) reflexion and by multiplying by the Lorentz and polarization factors, no other correction being made. In calculation, the atomic f values given in *International Tables* were used.

hkl	F_o	F_{c}	hkl	F_{o}	F_{c}	hkl	F_{o}	Fc
003	0	0	803	18	-26	16,0,5	0	19
004	4	-16	804	30	23	16,0,4	0	4
005	48	51	805	0	3	16,0,3	0	14
006	2	16	806	14	24	$16,0,\overline{2}$	0	9
007	34	51	80 <u>7</u>	10	17	16,0, 1	0	5
008	3	9	10,0, <u>8</u>	31	21	16,0,0	0	12
009	5	17	10,0,7	0	12	16,0,1	21	30
0,0,10	0	6	10,0, <u>6</u>	0	19	16,0,2	0	-12
0,0,11	25	-40	10,0,5	0	4	16,0,3	0	5
0,0,12	0	11	10.0,4	26	36	16,0,4	15	23
_			10,0,3	0	-2	16,0,5	0	9
20 <u>8</u>	40	39	10,0,2	13	21	16,0,6	0	-11
207	10	-19	10,0,1	0	- 7	16,0,7	0	- 2
206	65	77	10,0,0	11	- 1	10,0,8	0	1
205	0	0	10,0,1	41	24 50			
204	22	44	10,0,2	27	33	18,0,8	0	6
203	20	- 38	10,0,0	25	37	18,0,7	20	17
204	70	- 0	10,0,1	20	6	18,0,6	0	9
205	19	- 18	10.0.6	ŏ	ĩ		25	31
200	23		10.0.7	5	-12	18,0,4	5	10
201	20	6	10.0.8	0	2	18,0,5	0	9
200	v	0				18,0,2	0	- 0
408	0	4	12,0,8	4	-24	18,0,1	0	— o
408	70	- 4	12,0,7	0	- 7	18,0,0	0	10
407	10	-00	$12,0,\overline{6}$	0	— 9	18.0.2	15	29
400	Õ	10	$12,0,\overline{5}$	17	3	18.0.3	10	10
405	0	4	$12,0,\overline{4}$	21	33	18.0.4	ŏ	ĩ
403	ğ	28	12,0, <u>3</u>	50	-57	18,0,5	Ō	$1\overline{2}$
402	72	-79	12,0,2	10	-14	18,0,6	0	-13
401	36	-42	12,0,1	18	-21	18,0,7	0	9
402	16	-32	12,0,0	0	- 2			
403	7	12	12,0,1	17	30	510	20	14
404	48	63	12,0,2	0	4	610	49	-47
405	15	29	12,0,3	9	19	710	30	-22
406	65	-59	12,0,4	25	-40	810	38	29
407	0	-15	12,0,5	0	- 0	910	0	- 8
			12,0,0	5	- 3 14	10,1,0	34	30
$60\overline{7}$	18	-28	12,0,7	0	-1 4 0	11,1,0	0	11
$60\overline{6}$	16	28	12,0,0	Ū	0	12,1,0	22	20
$60\overline{5}$	0	0	14.0.11	20	24	13,1,0	0	2
$60\overline{4}$	11	-13	14.0.10	0	- 9	14,1,0	19	23
$60\overline{3}$	9	12	14.0.9	ŏ	9	15,1,0	0	0
$60\overline{2}$	137	-137	14.0.8	ŏ	12			
60 <u>1</u>	36	38	14.0.7	0	8	013	58	-50
600	10	34	14,0,6	0	- 7	014	22	20
601	23	24	14,0,5	0	— 9	015	31	-27
602	0	1	14,0,4	19	20	016	17	-18
603	20	-39	14,0,3	25	28	017	0	- 7
604 605	2 49	19	14,0,2	0	16	018	0	0
600	43	04	14,0,1	0	-12	019	62	63
607	0	1	14,0,0	0	- 5	0,1,10	U	0
609	0	- 4	14,0,1	0	3			
008	0	- 0	14,0,2	10	-22	118	0	- 3
- -		10	14,0,3	.0	1	117	0	0
808	27	49	14,0,4	15	- 23	116	0	- 8
807	6 1 <i>4</i>	1	14,0,5	0	- 9	115	0	0
806	15	-22	14,0,0	U A	- 3	114	0	4 ^
805	14	- 30	14,0,7	10	* 91	110	0	0
804 805	0	- 3	14,0,0	10	41	11/	U A	— ə
809	90	25	16010	25	39	110	v	- 0
801	62	81	16.0.9	10	12	218	28	- 29
800	6	- 8	16:0.8	ŏ	ĩ	217	-0	- 40
801	7	ĩ	16.0.7	ŏ	$-\bar{2}$	216	24	16
802	ò	- 5	16,0,6	20	-30	215	38	31
						I		

.

,

.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	hkl	F_o	F_{c}	hkl	F_{o}	F_{c}	hkl	F_o	F_{c}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$21\overline{4}$	72	72	718	0	0	11,1,6	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	213	100	-102	717	0	- 8	11.1.5	Ō	ŏ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	214	19	-11	716	Ō	- 3	11.1.4	ŏ	ŏ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	215	39	-29	715	Õ	- 4	11 1 3	Õ	_ °
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	216	0	- 8	714	25	24	11,1,0	ŏ	_ 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	217	18	19	713	20	5		ŏ	- 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	218	14	_11	719	0	0		0	3 5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				717	Ŏ	- 3	11,1,1	0	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	012	0	0	711	0	- 5	11,1,2	0	- 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	318	0	9	719	0	4	11,1,0	0	- 9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	317	0	6	712	0	9 e	11,1,4	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	316	0	0	710	0	0	11,1,0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	315	11	-19	/14	0	0	11,1,0	0	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	314	0	-5	715	0	0	11,1,7	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	313	0	4	716	0	1	11,1,8	0	- 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	313	19	18	717	0	- 2			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	314	0	- 7	718	0	- 1	12,1,8	0	19
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	315	0	-11				12,1,7	0	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	316	0	0	818	0	- 1	12,1,6	40	41
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	317	0	9	817	40	- 32	12.1.5	12	-19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	318	0	8	816	38	-31	12,1,4	0	- 8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				815	0	0	12.1.3	10	$-\bar{2}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	418	17	- 9	814	16	6	$12.1.\overline{2}$	17	-11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	417	20	26	813	43	36	12.1.1	65	58
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	416	20	1	$81\overline{2}$	0	- 8	12.1.1	26	-27
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	415	80	74	811	30	-28	12.1.2	0	11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	414	51	17	811	80	79	1213	ŏ	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	414	01 96	-47	812	33		12,1,0	ŏ	- 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	410	20	-20	813	17	-10 -12	12,1,4	Ŏ	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	414	0	10	814	14	-10	12,1,0	40	25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	411	20	- 10	815	<u>0</u>		12,1,0	40	35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	412	72	-73	816	0	- 4	12,1,7	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	413	11	0	817	0	9	12,1,8	U	-19
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	414	32	30	017	40	- 3			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	415	29	28	010	40	90	520	21	22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	416	25	27				620	21	22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	417	20	- 30	918	0	9	720	0	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	418	5	- 5	917	0	11	820	0	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				91 <u>6</u>	27	22	920	0	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	518	0	- 7	91 <u>5</u>	0	2	10,2,0	0	11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51 <u>7</u>	17	-10	914	0	- 5	11,2,0	0	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$51\underline{6}$	0	- 6	913	0	- 9	12,2,0	0	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	515	0	- 6	912	0	3	13,2,0	0	- 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	514	0	- 5	911	0	8	14,2,0	25	-23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$51\underline{3}$	0	0	911	12	9			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	512	12	10	912	0	2	024	0	9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	511	12	10	913	0	0	025	0	-16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	511	26	-20	914	0	0	026	0	15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	512	0	8	915	0	- 9	027	36	- 38
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	513	18	-10	916	0	- 9	028	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	514	0	3	917	0	0	029	0	-12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	515	0	5	918	0	8	0,2,10	0	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	516	0	0						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	517	0	2	10,1,8	0	5	128	0	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	518	0	1	10,1,7	48	-42	127	0	-14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_			10,1,6	50	47	126	0	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	618	0	- 6	10,1,5	0	- 5	$12\overline{5}$	0	- 6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$61\overline{7}$	0	4	10,1,4	0	- 6	124	28	-23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	616	17	-19	10,1,3	0	0	125	35	-34
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$61\overline{5}$	19	15	$10,1,\overline{2}$	16	18	126	0	- 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	614	129	127	10,1,1	12	-17	127	0	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$61\bar{3}$	0	- 8	10,1,1	26	29	128	0	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$61\overline{2}$	20	16	10,1,2	33	-32		-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	611	29	20	10,1,3	25	-21	228	24	-12
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	611	70	62	10,1,4	24	-29	227	0	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	612	0	- 9	10,1,5	20	23	226	36	33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	613	39	39	10,1.6	0	- 5	225	Ő	ñ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	614	0	6	10.1.7	10	8	$22\overline{4}$	ŏ	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	615	0	9	10.1.8	0	0	223	29	20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	616	Ō	15		ŭ	-	224	-0 7	20
618 0 0 11,1,7 0 - 4 226 20 18	617	45	44	11.1.8	0	1	225	44	-42
	618	0	0	11,1,7	0	- 4	226	20	18

Table 2 (cont.)

				`	,			
hkl	F_{o}	F_{c}	hkl	F_{o}	F_{c}	hkl	F_{o}	Fc
227	20	-19	527	0	7	821	49	51
228	0	3	528	Õ	-10	821	10	-13
	-	-		-		822	26	28
$32\overline{8}$	0	8	$62\overline{8}$	24	-20	823	24	29
$32\overline{7}$	14	14	$62\overline{7}$	Õ	- 8	824	37	-36
326	0	-10^{-10}	626	24	-21	825	0	- 7
$32\overline{5}$	Ō	10	$62\overline{5}$	0	0	826	16	-23
$32\overline{4}$	• 7	5	$62\overline{4}$	Ō	9	827	0	2
323	0	- 7	$62\overline{3}$	0	-10	828	0	1
324	0	- 3	$62\overline{2}$	68	60			
325	26	25	621	34	-34	928	0	14
326	0	13	621	0	0	$92\overline{7}$	0	14
327	0	12	622	0	- 9	926	0	- 9
328	0	- 3	623	0	4	$92\overline{5}$	0	- 4
			624	0	- 6	924	20	
$42\overline{8}$	0	0	625	42	44	923	0	0
$42\overline{7}$	41	49	626	0	0	$92\overline{2}$	0	0
$42\overline{6}$	0	- 5	627	0	3	921	14	20
$42\overline{5}$	0	- 9	628	0	5	921	0	5
$42\overline{4}$	0	14				922	0 .	15
$42\overline{3}$	31	-29	$72\overline{8}$	0	- 7	923	19	-17
$42\overline{2}$	61	54	727	0	- 2	924	0	- 6
421	0	0	$72\overline{6}$	0	13	925	0	0
422	0	- 1	$72\overline{5}$	0	0	926	0	9
423	0	- 4	$72\overline{4}$	0	0	927	0	6
424	32	-25	723	21	11	928	0	8
425	19	20	$72\overline{2}$	28	-30			
426	36	30	721	14	-11	$10,2,\overline{8}$	0	6
427	0	6	721	0	0	10,2,7	0	14
			722	0	-2	$10, 2, \overline{6}$	0	3
$52\overline{8}$	0	- 5	723	0	7	$10,2,\overline{5}$	0	11
$52\overline{7}$.17	-21	724	0	- 8	$10,2,\overline{4}$	41	43
$52\overline{6}$	0	2	725	0	- 9	$10,2,\overline{3}$	0	- 9
$52\overline{5}$	0	2	726	0	0	$10, 2, \overline{2}$	0	-13
$52\overline{4}$	0	9	727	0	11	$10, 2, \overline{1}$	0	15
52 3 `	7	7	728	0	4	10,2,1	0	6
$52\overline{2}$	20	12				10,2,2	0	15
$52\overline{1}$	16	-16	828	21	-26	10,2,3	18	-26
521	0	- 4	827	0	11	10,2,4	4	-14
522	0	12	826	0	5	10,2,5	0	1
523	0	11	825	0	3	10,2,6	Ó	-10
524	0	9	$82\overline{4}$	14		10,2,7	0	2
525	0	7	$82\overline{3}$	17	15	10,2,8	0	4
526	0	- 8	822	0	6			

amounting to 22° 19' and the B–O–B angle to 131° 29'.* Magnesium has a sixfold coordination, being surrounded by a distorted octahedron of six oxygen atoms of which two come from a B_2O_5 group and the remaining four one each from four other similar groups. Further, an MgO₆ octahedron has four of its eight O–O edges shared by the neighbouring similar octahedra so that we may conceive a band of oxygen and

* It is interesting to note that in the majority of borates the B-O-B angle does not vary much:

Substance	B-O-B angle	Type of group
CaB_2O_4	130° 13′†	BO ₂ chain (Zachariasen, 1931)
$K_2B_3O_6$	126° 30′	$B_{3}O_{6}$ ring (Zachariasen, 1937a)
$\mathrm{KH_2(H_3O)_2B_5O_{10}}$	126° 30′†	B ₅ O ₁₀ group (Zachariasen, 1937b)
CoB_2O_5	153°	B ₂ O ₅ double-triangle (Ber- ger, 1950)

† Calculated by the present writer.

magnesium atoms stretched indefinitely parallel to (201). An oxygen atom is either between one boron and three magnesium atoms (O_{I} , O_{II} and O_{IV}), between one boron and two magnesium atoms (O_{V}),

Fig. 5. The electrostatic balance of bonds in the structure of ${\rm Mg_2B_2O_5}.$

or between two boron and one magnesium atoms (O_{III}) . The balance of valency is illustrated in Fig. 5, and the interatomic distances are given in Table 3.

Table 3.	Interatomic distances in	$n \mathrm{Mg_2B_2O_5}$
Atom	Neighbour	Distance (Å)
Br	Or	1.35
-	Oπ	1.38
	o	1.38
$\mathbf{B}_{\mathbf{II}}$	$O_{\Pi I}$	1.37
	O_{IV}	1.33
	O_{∇}	1.33
Mg_I	O_{III}	2.09
	$O_{IV'}$	$2 \cdot 19$
	O_{I}	2.29
	O _I *	$2 \cdot 29$
	$O_{\nabla'}$	2.03
	O _{∇′} *	2.03
Mg_{II}	OI	1.95
-	0 ₁₁ *	2.43
	$O_{IV'}$	$2 \cdot 19$
	O _{IV} ,*	$2 \cdot 19$
	$O_{\Pi'}$	1.96
	O _{II'} *	2.19

* Primes denote equivalent atoms and asterisks those of the neighbouring cell.

Polymorphism of Mg₂B₂O₅

The structures of cobalt and magnesium pyroborates are very similar, both containing B_2O_5 groups of the same type. The unit cells compare as follows:

The structure of $Mg_2B_2O_5$ as worked out by us may be obtained from that of $Co_2B_2O_5$ of Berger by the replacement of cobalt by magnesium atoms, followed by a multiple twinning. In the polysymmetric synthesis the domain of operation may be a submultiple as well as a multiple of a unit cell (Ito, 1950, p. 2). Now, we divide the unit cell of $Co_2B_2O_5$ into two by (100) planes passing through the points $\frac{1}{4}$, 0, 0 and $\frac{3}{4}$, 0, 0 and subject them to the glide planes across the same planes with a glide *b* (Fig. 6(*a*)). The new unit cell has about the dimensions of that of $Mg_2B_2O_5$ (Fig. 6(*b*); note that *a* and *b* are interchanged), and the space group and structure (with cobalt replaced by magnesium) are the same.

Although we know as yet no triclinic $Mg_2B_2O_5$ which, corresponding to $Co_2B_2O_5$, constitutes the building unit of monoclinic $Mg_2B_2O_5$, the existence of such may certainly be expected in view of the similar parts played by cobalt and magnesium in crystal chemistry (Berger, 1949). Actually Watanabé obtained synthetically a compound of the composition $Mg_2B_2O_5$, of which the powder pattern, compared with that of the natural crystal, reveals certain visible differences though with the nearly same main

Fig. 6. The relationship of the structures of cobalt and magnesium pyroborates, both being projected on a plane normal to the c axis. Notation as in Fig. 2. (Some of boron atoms are displaced from the actual positions so as to be seen. The height of atoms are not given.) The B_2O_5 double-triangles, instead of B-O bonds, are traced. (a) $Co_2B_2O_5$. (b) $Mg_2B_2O_5$. The corresponding portions of the two structures are shaded. Broken lines in (b) indicate the traces of glide planes, $(010)_{\frac{3}{2}}$.

Table 4.	Powder	photographs	of natural	and	artificial	$Mg_2B_2O_1$
	Camero	rading 28.65	mm Co Ka	r 12-	-1.79Å)	

	e - i omi t						000 /	
	Natu	ral		1		Artifi	cial	
	<i>a</i> 1	9.10 Å				<i>a</i>	3.19 Å	
	4 J	2.10 Å				и Ъ	5.09 Å	
	0	3.12 A				0	0.90 A	
	C	9.36 A				c	9.03 A	
•	β 10)4·3°				α I(3.9	
	•					β)0·9°	
						γ	02∙0°	
hkl	Q_o	Q_c	Io		hkl	Q_o	Q_c	Io
201	0.0500	0.0486	<i>m</i>		011	0.0520	0.0527	172.
202	0.0601	0.0588			012	0.0630	0.0632	
202 909	0.0059	0.0049	0		012	0.1020	0.1012	•
400	0.10552	0.10942	0		012	0 1020	0 1012	
402	0.1299	0.1239	8			0.1331	0.1348	8
					102	0.1495	0.1493	8
012	0.1520	0.1213	vs		102	0.1260	0.1262	vs
203	0.1645	0.1642	m		013	0.1761	0.1758	vw
$20\overline{4}$	0.1859	0.1856	w					
					Ī12	0.1948	0.1939	m-
212	0.2026	0.1989	w					
					103	0.2127	0.2125	<i>m</i> –
013	0.9173	0.2142	417				0 2220	
010	0 2110	0 41 44	w		101	0.9494	0.9497	
e03	0.9401	0.0490			141	0.2434	0.2427	8
002	0.2481	0.2439	V 8		032	0.2052	0.2008	vs
					113	0.2764	0.2766	m-
213	0.2712	0.2689	m		113	0.2880	0.2866	8
412	0.2979	0.2974	m					
414	0.3387	0.3344	mw					
					114(?)	0.3365	0.3386	vw
610	0.3498	0.3496	mw					
					123	0.3829	0.3832	vw
611	0.3920	0.3890	m-					
020	0.4074	0.4108	$m \perp$		200	0.4039	0.4036	<u> 222 –</u>
	0 2002	0 1200			210	0.4243	0.4246	
					9 1 1	0.4310	0.4317	
990	0.4996	0.4999		· · · ·	411	0 4010	0 1011	110-
240 017	0.4410	0.4409	776					
014	0.4419	0.4402	m		202	0.4462	0.4464	41911
,,, ,	0.4895	0.4862	40		202	0 1102	0 1101	· w
	0 4000	0.4002	u		124	0.5231	0.5221	m-
$42\overline{2}$	0.5361	0.5327	11)		$22\overline{2}$	0.5490	0.5497	<i>m.</i> -
813	0.5472	0.5421	10			00100	0 0 1 0 1	
010	00112	00121	w		221	0.5700	0.5688	w
					133	0.5888	0.5880	$w \downarrow$
811	0.5947	0.5902	n +					,
	0 00 11	0 0002	~ 1		Ī 41	0.6138	0.6148	vw
					204	0.6250	0.6260	vw
					$2\overline{3}0$	0.6473	0.6476	vw
$62\overline{2}$	0.6484	0.6517	w		-			
406	0.6598	0.6569	w^+		026	0.7031	0.7028	m
	0 0000	0 0000	~ 1		231	0.7482	0.7483	vw
$62\overline{4}$	0.7503	0.7483	w					
027	0.9987	1.0029	w+		_			
					207	1.0120	1.0123	m

Camera radius 28.65 mm.	$Co K\alpha \ (\lambda = 1.79 \text{ Å}).$
$\sin^2 A/\lambda^2 = h^2 a^{*2} \perp h^2 h^{*2} \perp h^2 c^{*2} \perp 2h/h^* c^*$	$\cos \alpha^* + 2lba^*c^* \cos \beta^* + 2bka^*b^* \cos \alpha^*$

features. Comparing line by line we have succeeded in indexing completely the powder photographs of both of them. The result is given in Table 4 and shows that the artificial compound, as anticipated, is triclinic with the lattice constants nearly identical with those of $\text{Co}_2\text{B}_2\text{O}_5$. That $\text{Mg}_2\text{B}_2\text{O}_5$ is dimorphous and the monoclinic form is a multiple twin of the triclinic one may be considered established.

Actually, the twinning operation is described by the matrix $\frac{3}{57} 1 \frac{T}{57} / \frac{1}{2} 0 0 / 0 0 1$. The atomic parameters of the monoclinic structure are then converted into those of the triclinic one by a simple transformation (Table 5). Further, the *F* values calculated on the basis of these new parameters check well with

Table 5. Coordinates of atoms of Mg₂B₂O₅, artificial.

The coordinates m', n', p' of the triclinic crystal are derived from the coordinates m, n, p of the monoclinic crystal by the formulae: $m' = n - \frac{1}{2}, n' = 2m + 2n/57 - \frac{1}{2}, p' = n/57 + p$. The origin of the triclinic cell is placed at $\frac{1}{2}, \frac{1}{2}, 0$ of the monoclinic cell.

	x/a	y/b	z/c
0,	0.81	0.374	0.320
O_2	0.80	0.780	0.438
O_3	0.20	0.630	0.199
O₄	0.25	0.012	0.245
O_5	0.31	0.774	0.000
Mg ₁	0.31	0.294	0.132
Mg ₂	0.75	0.122	0.412
B ₁	0.71	0.596	0.321
\mathbf{B}_{2}	0.32	0.816	0.146

Y. TAKÉUCHI

Table 6. Calculated and observed intensities of Mg₂B₂O₅, artificial

Intensities estimated visually in the powder photograph (Co $K\alpha$)

hkl	I_o	F_{c}	hkl	Io	F_{c}	hkl	Io	F_{c}
011	m	-25	$03\overline{2}$	8	-63	$22\overline{2}$	m-	22
$01\overline{2}$	8	13	<u>1</u> 13	m-	15	221	w+	-12
012	8	14	113	8	52	133	w+	-17
$02\overline{2}$	8	-35	114	vw	1	141	vw	5
$10\overline{2}$	8	59	123	vw	- 5	204	vw	6
102	vs	-50	200	m+	-44	$2\overline{3}0$	vw	- 9
013	vw	- 3	210	m+	-20	026	m	-30
$\overline{1}12$	m-	21	211	m+	25	231	vw	- 1
$10\overline{3}$	m-	-10	$20\overline{2}$	vw	- 9	$20\overline{7}$	m	-24
$\overline{1}21$	8	-20	124	m-	-15			

the intensities of reflexions observed in the powder photograph of the artificial (triclinic) crystal (Table 6), supporting our statement.

In conclusion the writer wishes to express his sincere thanks to Prof. Ito for suggestion and guidance throughout the work.

References

BERGER, S. V. (1949). Acta chem. scand. 3, 660.

BERGER, S. V. (1950). Acta chem. scand. 4, 1054.

ITO, T. (1950). X-ray Studies on Polymorphism. Tokyo: Maruzen.

TAKÉUCHI, Y. (1950). Acta Cryst. 3, 208.

- TAKÉUCHI, Y., WATANABÉ, T. & ITO, T. (1950). Acta Cryst. 3, 98.
- WATANABÉ, T. (1939). Miner. petrogr. Mitt. 50, 441.
- ZACHARIASEN, W. H. (1931). Proc. Nat. Acad. Sci. Wash. 17, 617.
- ZACHARIASEN, W. H. (1937a). J. Chem. Phys. 5, 119.
- ZACHARIASEN, W. H. (1937b). Z. Krystallogr. 98, 266.

Acta Cryst. (1952). 5, 581

The Structure of Synthetic Polypeptides. I. The Transform of Atoms on a Helix

By W. Cochran

Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

F. H. C. CRICK

The Medical Research Council Unit for the Study of the Molecular Structure of Biological Systems, The Cavendish Laboratory, Cambridge, England

AND V. VAND*

Chemistry Department, The University, Glasgow W. 2, Scotland

(Received 16 February 1952)

The formulæ are given for the Fourier transforms of a number of helical structures; namely, a thin helical wire, a set of identical atoms spaced at regular intervals on a helix, and the general case of a group of atoms repeated by the operation of a non-integer screw. General predictions are made concerning the intensities of the X-ray diffraction pattern of the synthetic polypeptide poly- γ -methyl-L-glutamate, assuming that its structure is based on the α -helix suggested by Pauling & Corey.

1. Introduction

The following calculations were undertaken because of current interest in the structures of certain synthetic polypeptides. The preliminary X-ray data for these polypeptides have been described by Bamford, Hanby & Happey (1951) and their infra-red behaviour by Ambrose & Elliott (1951). Pauling & Corey (1951) have interpreted the structures of the two polypeptides which have so far given the best X-ray diffraction pictures, namely poly- γ -methyl-L-glutamate and poly- γ -benzyl-L-glutamate, in terms of the α -helix described by Pauling, Corey & Branson (1951). In this structure the residues repeat along the helix with a spacing of about 1.5 Å in the chain direction, and Perutz (1951) has found that a strong meridional reflexion of spacing 1.5 Å is given by poly- γ -benzyl-

^{*} Imperial Chemical Industries Fellow.